skip to main content


Search for: All records

Creators/Authors contains: "Hoyt, Joseph R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding host persistence with emerging pathogens is essential for conserving populations. Hosts may initially survive pathogen invasions through pre-adaptive mechanisms. However, whether pre-adaptive traits are directionally selected to increase in frequency depends on the heritability and environmental dependence of the trait and the costs of trait maintenance. Body condition is likely an important pre-adaptive mechanism aiding in host survival, although can be seasonally variable in wildlife hosts. We used data collected over 7 years on bat body mass, infection and survival to determine the role of host body condition during the invasion and establishment of the emerging disease, white-nose syndrome. We found that when the pathogen first invaded, bats with higher body mass were more likely to survive, but this effect dissipated following the initial epizootic. We also found that heavier bats lost more weight overwinter, but fat loss depended on infection severity. Lastly, we found mixed support that bat mass increased in the population after pathogen arrival; high annual plasticity in individual bat masses may have reduced the potential for directional selection. Overall, our results suggest that some factors that contribute to host survival during pathogen invasion may diminish over time and are potentially replaced by other host adaptations. 
    more » « less
  2. Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behaviour. Male bats were more active during autumn which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects. 
    more » « less
  3. Abstract

    Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungusPseudogymnoascus destructans,has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detectP. destructansin environmental samples, we initiated this study to assess whetherP. destructanscan persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to twoP. destructanscontaminated hibernacula in Vermont where native bats had been excluded.Infection withP. destructanswas apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure toP. destructansis sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts.

     
    more » « less
  4. Drake, John (Ed.)
  5. null (Ed.)
    Abstract Habitat alteration can influence suitability, creating ecological traps where habitat preference and fitness are mismatched. Despite their importance, ecological traps are notoriously difficult to identify and their impact on host–pathogen dynamics remains largely unexplored. Here we assess individual bat survival and habitat preferences in the midwestern United States before, during, and after the invasion of the fungal pathogen that causes white-nose syndrome. Despite strong selection pressures, most hosts continued to select habitats where disease severity was highest and survival was lowest, causing continued population declines. However, some individuals used refugia where survival was higher. Over time, a higher proportion of the total population used refugia than before pathogen arrival. Our results demonstrate that host preferences for habitats with high disease-induced mortality can create ecological traps that threaten populations, even in the presence of accessible refugia. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Emerging infectious diseases have caused population declines and biodiversity loss. The ability of pathogens to survive in the environment, independent of their host, can exacerbate disease impacts and increase the likelihood of species extinction. Control of pathogens with environmental stages remains a significant challenge for conservation and effective management strategies are urgently needed.

    We examined the effectiveness of managing environmental exposure to reduce the impacts of an emerging infectious disease of bats, white‐nose syndrome (WNS). We used a chemical disinfectant, chlorine dioxide (ClO2), to experimentally reducePseudogymnoascus destructans, the fungal pathogen causing WNS, in the environment. We combined laboratory experiments with 3 years of field trials at four abandoned mines to determine whether ClO2could effectively removeP. destructansfrom the environment, reduce host infection and limit population impacts.

    ClO2was effective at killingP. destructansin vitro across multiple concentrations. In field settings, higher concentrations of ClO2treatment were needed to sufficiently reduce viableP. destructansconidia in the environment.

    The reduction in the environmental reservoir at treatment sites resulted in lower fungal loads on bats compared to untreated control populations. Survival following treatment was also higher in little brown bats (Myotis lucifugus), and trended higher for tricolored bats (Perimyotis subflavus).

    Synthesis and applications. Our results highlight that targeted management of sources for environmental transmission can be an effective control strategy for wildlife disease. We found that successfully reducing pathogen in the environment decreased disease severity and increased survival, but required higher treatment exposure than was effective in laboratory experiments, and the effects varied among species. More broadly, our findings have implications for other emerging wildlife diseases with free‐living pathogen stages by highlighting how the degree of environmental contamination can have cascading impacts on hosts, presenting an opportunity for intervention.

     
    more » « less
  8. Abstract

    Tools for reducing wildlife disease impacts are needed to conserve biodiversity. White-nose syndrome (WNS), caused by the fungusPseudogymnoascus destructans, has caused widespread declines in North American bat populations and threatens several species with extinction. Few tools exist for managers to reduce WNS impacts. We tested the efficacy of a probiotic bacterium,Pseudomonas fluorescens, to reduce impacts of WNS in two simultaneous experiments with caged and free-flyingMyotis lucifugusbats at a mine in Wisconsin, USA. In the cage experiment there was no difference in survival between control andP.fluorescens-treated bats. However, body mass, not infection intensity, predicted mortality, suggesting that within-cage disturbance influenced the cage experiment. In the free-flying experiment, where bats were able to avoid conspecific disturbance, infection intensity predicted the date of emergence from the mine. In this experiment treatment withP.fluorescensincreased apparent overwinter survival five-fold compared to the control group (from 8.4% to 46.2%) by delaying emergence of bats from the site by approximately 32 days. These results suggest that treatment of bats withP.fluorescensmay substantially reduce WNS mortality, and, if used in combination with other interventions, could stop population declines.

     
    more » « less
  9. Disease outbreaks and pathogen introductions can have significant effects on host populations, and the ability of pathogens to persist in the environment can exacerbate disease impacts by fueling sustained transmission, seasonal epidemics, and repeated spillover events. While theory suggests that the presence of an environmental reservoir increases the risk of host declines and threat of extinction, the influence of reservoir dynamics on transmission and population impacts remains poorly described. Here we show that the extent of the environmental reservoir explains broad patterns of host infection and the severity of disease impacts of a virulent pathogen. We examined reservoir and host infection dynamics and the resulting impacts of Pseudogymnoascus destructans , the fungal pathogen that causes white-nose syndrome, in 39 species of bats at 101 sites across the globe. Lower levels of pathogen in the environment consistently corresponded to delayed infection of hosts, fewer and less severe infections, and reduced population impacts. In contrast, an extensive and persistent environmental reservoir led to early and widespread infections and severe population declines. These results suggest that continental differences in the persistence or decay of P. destructans in the environment altered infection patterns in bats and influenced whether host populations were stable or experienced severe declines from this disease. Quantifying the impact of the environmental reservoir on disease dynamics can provide specific targets for reducing pathogen levels in the environment to prevent or control future epidemics. 
    more » « less